Thursday, September 11, 2008

Successful test for Europe's Big Bang collider

Big bang cosmology
i was just reading about the big bang theory of how our universe began and thinking about how well this cosmology explains our universe.

the most successful test of the theory is the measurement of the cosmic microwave background radiation (see nobel prize in physics, 2006). The CMB is the very first light we know how to "see" after the big bang, and it only became visible 300,000 years after the big bang happened. it's fantastically exciting that the big bang theory matches so well to the experiment we performed (remember: science it works, bitches), but there remain many unanswered (and currently unanswerable) issues to understand!

what existed before the big bang? what is dark energy? immediately after the big bang, why were there 10,000,000,000 (ten billion) anti-particles for every 10,000,000,001 (ten billion AND ONE) particles? i keep reading and learning more, trying to understand life, the universe, and everything, , but i'm left with unsatisfactory justifications to explain away problems.

the WMAP cosmology tutorial states,

It is beyond the realm of the Big Bang Model to say what gave rise to the Big Bang. There are a number of speculative theories about this topic, but none of them make realistically testable predictions as of yet.

well, that sucks!! i mean, maybe there are other universes, just as there are surely life forms elsewhere in our universe… we just can't prove it (yet?). we dont know how to prove it because we havent developed the ability to find it.

creating "speculative theories" about these lingering questions over a few beers is quite fun, but in my mind it always comes back to the question of "how do we test the theories?" in order to know whether the big bang model of the universe is completely correct, we must develop ways to detect other remnants from the earliest parts of the universe.

but i got nothing.

what are the tests? how can we "see" anything earlier than 300,000 years after the big bang? will dark energy give us a clue? what the hell is dark energy? it's the stuff that is 70% of all the stuff that is our universe, but how does it manage to accelerate the expansion of the universe? (... if it does?) we're currently developing the technology for experiments that will potentially beable to detect the bizzaro entity called dark energy... but are there any other tests we can perform? how does gravity work at humongous distances?

thelarge hadron collider (LHC) experiment is a good start for understanding the conditions of the universe just after the big bang. i look forward to the results near the end of 2008!

No comments: